

Pharmacology - 2

1

Gastrointestinal and Antiemetic Drugs

Pharmacology-2/ Gastrointestinal & Antiemetic Drugs/ Dr. Y. Abusamra Faculty of Pharmacy Philadelphia University

LEARNING OUTCOMES

After the student finishes studying this chapter, he will be able to:

- Classify the drugs used for hyperacidity, such as H2-receptor antagonists, proton pump inhibitors, antacids, etc., and the drugs used as antiemetic.
- Illustrate the mechanisms of actions of these drugs.
- Numerate the remarkable side effects and drug-drug interactions of these studied medications.
- Clarify the remarkable clinical aspects of these drugs indications.
- Explain the most remarkable points regarding the pharmacokinetic and pharmacodynamic parameters of these drugs.

3

Drugs Used to Treat Peptic Ulcer Disease and Gastroesophageal Reflux Disease:

- The two main causes of peptic ulcer disease are:
- Infection with gram-negative Helicobacter pylori, also:
- The use of nonsteroidal anti-inflammatory drugs (NSAIDs).
- Increased hydrochloric acid (HCI) secretion.
- Inadequate mucosal defense against gastric acid.
- Treatment approaches include:
- 1. Eradicating the *H. pylori* infection.
- Reducing secretion of gastric acid with the use of PPIs or H2 receptor antagonists. and/or
- 3. Providing agents that protect the gastric mucosa from damage, such as misoprostol and sucralfate.

Gastrointestinal and Antiemetic Drugs

ANTIMICROBIAL AGENTS

Amoxicillin GENERIC ONLY

Bismuth compounds **PEPTO-BISMOL**,

KAOPECTATE

Clarithromycin BIAXIN

Metronidazole FLAGYL

Tetracycline GENERIC ONLY

H₂ – HISTAMINE RECEPTOR BLOCKERS

Cimetidine TAGAMET

Famotidine PEPCID

Nizatidine AXID

Ranitidine ZANTAC

PROTON PUMP INHIBITORS

Dexlansoprazole DEXILANT Esomeprazole NEXIUM Lansoprazole PREVACID Omeprazole PRILOSEC Pantoprazole PROTONIX

Rabeprazole ACIPHEX

PROSTAGLANDINS

Misoprostol CYTOTEC

ANTIMUSCARINIC AGENTS

Dicyclomine BENTYL

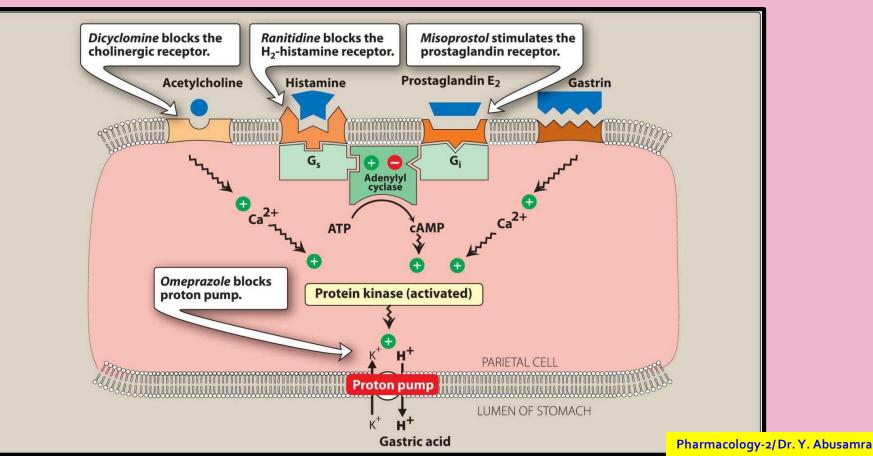
ANTACIDS

Aluminum hydroxide GENERIC ONLY Calcium carbonate TUMS Magnesium hydroxide MILK OF MAGNESIA Sodium bicarbonate ALKA-SELTZER

MUCOSAL PROTECTIVE AGENTS

Bismuth subsalicylate PEPTO-BISMOL **Sucralfate** CARAFATE

Pharmacology-2/Dr. Y. Abusamra



AGENTS THAT REDUCE INTRAGASTRIC ACIDITY:

PHYSIOLOGY OF ACID SECRETION:

Cholecytokinin- B receptors

 The parietal cell contains receptors for gastrin (CCK-B), histamine (H2), and acetylcholine (muscarinic, M3).

Antimicrobial agents:

- Patients with peptic ulcer disease (duodenal or gastric ulcers) who are infected with *H. pylori* require antimicrobial treatment.
- Eradication of *H. pylori* with various combinations of antimicrobial drugs results in <u>rapid healing</u> of active ulcers and low recurrence rates (less than 15%, compared with 60% to 100% per year for ulcers healed with acid-reducing therapy alone).
- Currently, quadruple therapy of bismuth subsalicylate, metronidazole, and tetracycline plus a PPI is a recommended <u>first-line</u> option.
- Bismuth subsalicylate: an <u>antacid</u> medication used to treat temporary discomforts of the stomach and gastrointestinal tract, such as <u>diarrhea</u>, <u>indigestion</u>, <u>heartburn</u> and <u>nausea</u> {90% radication rate}.

 Triple therapy: consists of a PPI combined with amoxicillin (metronidazole may be used in penicillin-allergic patients) plus clarithromycin is a preferred treatment when rates of clarithromycin resistance are low and the patient has no prior exposure to macrolide antibiotics.

H2 receptor antagonists:

- Gastric acid secretion is stimulated by <u>acetylcholine</u>, <u>histamine</u>, and <u>gastrin</u>.
- The receptor-mediated binding of acetylcholine, histamine, or gastrin results in the activation of protein kinases, which in turn stimulates the H+/K+-adenosine triphosphatase (ATPase) proton pump to secrete hydrogen ions in exchange for K+ into the lumen of the stomach.

- By competitively blocking the binding of histamine to H2 receptors, these agents reduce the secretion of gastric acid.
- The four drugs used in the US {cimetidine, famotidine, nizatidine, and ranitidine} inhibit <u>basal</u>, <u>food-stimulated</u>, and <u>nocturnal</u> secretion of gastric acid, reducing acid secretion by approximately 70%.
- Cimetidine was the first H2 receptor antagonist.
- However, its utility is limited by its <u>adverse effect profile</u> and <u>drug–drug interactions.</u>
- They are reversible competitive inhibitors of H₂ receptors.
- Their use has decreased with the advent (rising) of PPIs.

- All four agents are <u>equally effective</u> in promoting the healing of duodenal and gastric ulcers.
- Recurrence is common if *H. pylori* is present and the patient is treated with these agents <u>alone</u>.
- Patients with NSAID-induced ulcers should be treated with PPIs, because these agents heal and prevent future ulcers more effectively than do H2 receptor antagonists.
- PPIs are also used for acute stress ulcers.
- Acute stress ulceration often occurs in seriously ill patients who have an acute pathophysiological disturbance, such as <u>hypotension</u>, <u>hypoxia</u>, <u>sepsis</u>, <u>uremia</u> {high urea levels in the blood} or <u>ischemia {restriction in blood supply to tissues}</u>.

GASTROESOPHAGEAL REFLUX DISEASE – (GERD):

- H2 receptor antagonists are effective for the treatment of heartburn or GERD.
- H2 receptor antagonists act by decreasing acid secretion; therefore, they may not relieve symptoms of heartburn for up to 45 minutes.
- Antacids more quickly and efficiently neutralize stomach acid, but their action is short lived.
- For these reasons, PPIs are now used <u>preferentially</u> in the treatment of GERD, especially for patients with severe and frequent heartburn.

Pharmacokinetics:

- After oral administration, the H2 receptor antagonists are rapidly absorbed.
- They distribute widely throughout the body (including into breast milk and across the placenta).
- They are excreted mainly in the **urine**.
- Cimetidine, ranitidine, and famotidine are also available in intravenous formulations.
- The half-life of these agents may be increased in patients with renal dysfunction, and dosage adjustments are needed.
- Cimetidine, ranitidine, and famotidine undergo first-pass hepatic metabolism resulting in a bioavailability of approximately 50%.
- **Nizatidine** has little first-pass metabolism.

Gastrointestinal and Antiemetic Drugs

Drug	Relative Potency	Dose to Achieve > 50% Acid Inhibition for 10 Hours	Usual Dose for Acute Duodenal or Gastric Ulcer	Usual Dose for Gastroesophageal Reflux Disease	Usual Dose for Prevention of Stress-Related Bleeding
Cimetidine		400–800 mg	800 mg HS or 400 mg bid	800 mg bid	50 mg/h continuous infusion
Ranitidine	4–10	150 mg	300 mg HS or 150 mg bid	150 mg bid	6.25 mg/h continuous infusion or 50 mg IV every 6–8 h
Nizatidine	4–10	150 mg	300 mg HS or 150 mg bid	150 mg bid	Not available
Famotidine	20-50	20 mg	40 mg HS or 20 mg bid	20 mg bid	20 mg IV every 12 h
bid, twice daily; HS, bedtime.					

- They are highly celective and do not affect H1 or H3 receptors (cognition disorders, modulate the release of other NT's in the brain; histamine release in the CNS triggers excitatory NT's release such as glutamate and acetylcholine by stimulation of H1 receptors in the cortex).
- H2 antagonists <u>reduce</u> acid secretion stimulated by <u>histamine</u> as well as by <u>gastrin</u> and <u>cholinomimetic (cholinergic) agents.</u>

- H2 antagonists are especially effective at inhibiting nocturnal acid secretion (which depends largely on histamine).
- They have a modest impact on meal-stimulated acid secretion (which is stimulated by gastrin and acetylcholine as well as histamine).
- These drugs are commonly given twice daily.
- **CLINICAL USES:**
- **1.** Gastroesophageal reflux disease (GERD):
- Patients with infrequent heartburn or dyspepsia (fewer than <u>three</u> times per week) may take either antacids or intermittent H2 antagonists.
- O H2 antagonists may be taken prophylactically <u>before</u> meals in an effort to reduce the likelihood of heartburn.

- O Frequent heartburn is better treated with twice-daily H2 antagonists or PPIs.
- 2. Peptic ulcer disease:
- PPIs have largely replaced H2 antagonists in the treatment of acute peptic ulcer disease. Nevertheless, H2 antagonists are still sometimes used.
- Nocturnal acid suppression by H2 antagonists affords effective ulcer healing in most patients with uncomplicated gastric and duodenal ulcers (<u>Once daily at bed time</u>).
- For patients with ulcers caused by aspirin or other NSAIDs, the NSAID should be <u>discontinued</u>.
- If the NSAID must be continued for clinical reasons despite active ulceration, a PPI should be given instead of an H2 antagonist to more reliably promote ulcer healing.
- For patients with acute peptic ulcers caused by <u>*H pylori*</u>, H2 antagonists <u>no longer</u> play a significant therapeutic role.

3. Dyspepsia:

 They are sometimes prescribed in dyspepsia (indigestion; discomfort, pain nausea and bloating), yet the results compared with placebo are not that convincing.

4. Prevention of bleeding from stress-related gastritis:

- The agents that increase intragastric pH (<u>H2 antagonists</u> or <u>PPIs</u>) reduce the incidence of clinically significant bleeding and should be administered to patients who are at high risk of gastrointestinal bleeding.
- For patients who are unable to receive enteral medications, either <u>intravenous</u> H2 antagonists or PPIs may be administered.
- Continuous infusion of H2 antagonists is preferred over bolus infusions.

Adverse effects:

In general, the H2 receptor antagonists are well tolerated (very safe).

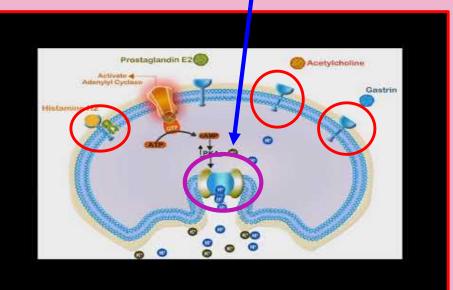
- Cimetidine can have endocrine effects, such as gynecomastia and impotence in men, and galactorrhea (continuous release of milk) in women because it:
 - *Inhibits binding of dihydrotestosterone to androgen receptors.

*Inhibits metabolism of estradiol.

✤Increases serum prolactin levels.

These effects are specific to cimetidine; don't occurs with other H2-antagonists.

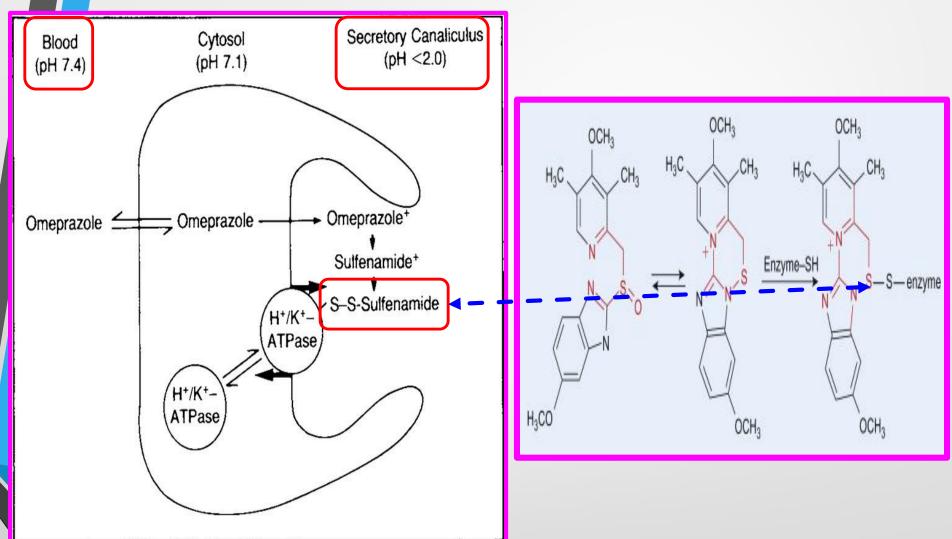
 CNS-related: such as confusion and altered mentation occur primarily in elderly patients and after intravenous administration.



- H2 receptor antagonists may <u>reduce the efficacy</u> of drugs that require an <u>acidic</u> environment for absorption, such as <u>ketoconazole</u> {well dissoluted in acidic media as it is a weak base}.
- Cimetidine inhibits several cytochrome P450 isoenzymes and can interfere with the metabolism of many drugs, such as warfarin, phenytoin, and clopidogrel.
- H2 receptor blockers should <u>not</u> be administered to pregnant women unless necessary {don't have known harmful effects on the fetus}.
- Secreted into breast milk; can affect nursing infants.
- Rapid infusion can <u>block cardiac H2</u> receptors; hypotension and bradycardia. Infuse over 30 minutes. (stimulation: increase in inotropic and chronotropic effects).

PROTON-PUMP INHIBITORS (PPIs):

- The PPIs bind to the H+/K+-ATPase enzyme system (proton pump) and suppress the secretion of hydrogen ions into the gastric lumen.
- The membrane-bound proton pump is the final step in the secretion of gastric acid; controls acid secretion <u>apart from the</u> <u>source or the mechanism of the acid secretion</u>.
- The available PPIs include:
 - Dexlansoprazole.
 - Esomeprazole.
 - Lansoprazole.
 - Omeprazole.
 - Pantoprazole.
 - Rabeprazole.

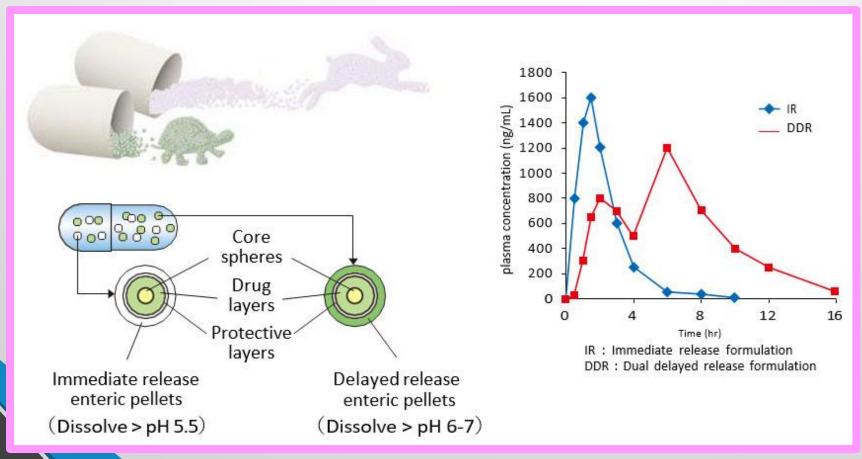

19

- These agents are prodrugs with <u>an acid-resistant enteric</u> <u>coating</u> to protect them from premature degradation by gastric acid.
- The coating is removed in the <u>alkaline duodenum</u>, and the prodrug, a weak base, is absorbed {unionized fraction} and transported to the parietal cell. There, it is converted to the active drug {sulfenamide; an isomer to omeprazole} and forms a stable covalent bond with the H+/K+-ATPase enzyme [see the figure, next slide].
- It takes about <u>18</u> hours for the enzyme to be resynthesized, and acid secretion is inhibited during this time.
- An <u>oral product</u> containing omeprazole combined with sodium bicarbonate for faster absorption [in the alkaline medium] and to protect the <u>non-enteric</u> coated drug from degradation in the acidic medium.

Gastrointestinal and Antiemetic Drugs

Therapeutic uses:

- The PPIs are superior to the H2 antagonists in suppressing acid production and healing ulcers. Thus,
- They are the preferred drugs for the {1} treatment of GERD, {2} erosive esophagitis, {3} active duodenal ulcer, and pathologic hypersecretory conditions such as {4} Zollinger-Ellison syndrome [GASTRINOMA: tumor in the duodenum or pancreas; secretes large amounts of GASTRIN; hyperacidity].
- PPIs <u>{5}</u> reduce the risk of bleeding from ulcers caused by aspirin and other NSAIDs and may be used for <u>{6}</u> prevention or treatment of NSAID-induced ulcers.
- PPIs are also used for <u>{7}</u> stress ulcer prophylaxis and management.
- PPIs are <u>{8}</u> combined with antimicrobial regimens used to eradicate <u>H. pylori</u>.



Pharmacokinetics:

- These agents are effective orally.
- For maximum effect, PPIs should be taken 30 to 60 minutes before breakfast or the largest meal of the day.
- Dexlansoprazole has a <u>dual delayed-release</u> formulation and can be taken without regard to food. {2 different sets of entericcoated granules, see the figure on the next slide}.
- Esomeprazole, lansoprazole, and pantoprazole are available in intravenous formulations.
- Although the plasma half-life of these agents is only a few hours, <u>they have a long duration of action due to covalent</u> <u>bonding with the H+/K+-ATPase enzyme.</u>
- Metabolites of these agents are excreted in urine and feces.

Dual-delayed release of dexlanzoprazole

ADVERSE EFFECTS:

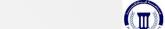
- The PPIs are generally well tolerated.
- Omeprazole and esomeprazole may (1) decrease the <u>effectiveness of clopidogrel</u> [anti-platelet; it has to be activated] because they inhibit CYP2C19 and prevent the conversion of clopidogrel to its <u>active</u> metabolite.

In general, concomitant use of these PPIs with clopidogrel is NOT recommended.

- However, if PPIs have to be prescribed to patients taking clopidogrel, agents with <u>minimal CYP2C19 inhibition</u> (pantoprazole or rabeprazole) may be preferred (3-study report).
- PPIs may increase the risk of (2) fractures, particularly if the duration of use is 1 year or greater.

- Prolonged acid suppression with PPIs (and H2 receptor antagonists) may result in (3) low vitamin B12 because acid is required for its absorption in a complex with intrinsic factor [a glycoprotein produced by the parietal cells & is necessary for Vit B12 absorption].
- Elevated gastric pH may also (4) impair the absorption of calcium carbonate.
- Calcium citrate is an effective option for calcium supplementation in patients on acid suppressive therapy, since absorption of the <u>citrate salt is not affected by gastric pH</u>.
- (5) Diarrhea and Clostridium difficile colitis may occur in patients receiving PPIs. Patients must be counseled to discontinue PPI therapy if they have diarrhea for several days.
- ✓ (6) Hypomagnesemia { Mg}.
- (7) Increased incidence of pneumonia.

Prostaglandins:


- Their cytoprotective effects include:
 - Inhibition of <u>acid</u> secretion.
 - Stimulation of <u>mucus</u> and <u>bicarbonate</u> secretion.
- O A deficiency of prostaglandins is thought to be involved in the pathogenesis of peptic ulcers. Misoprostol, an analog of prostaglandin E1, is approved for the prevention of <u>NSAID-</u> induced gastric ulcers.
- O Prophylactic use of misoprostol should be considered in patients who take NSAIDs and are at moderate to high risk of NSAID-induced ulcers, such as elderly patients and those with previous ulcers.
- OMisoprostol is <u>contraindicated</u> in <u>pregnancy</u>, since it can stimulate uterine contractions and cause miscarriage.

- Dose-related diarrhea is the most common adverse effect and limits the use of this agent.
- Thus, PPIs are preferred agents for the prevention of NSAIDinduced ulcers.

Antacids:

- Antacids are (1) weak bases that react with gastric acid to form water and a salt to diminish gastric acidity.
- Because pepsin (a proteolytic enzyme; mucosal damage) is inactive at a pH greater than 4, (2) antacids also reduce pepsin activity.
- Antacid products vary widely in their chemical composition, acid-neutralizing capacity, sodium content, and palatability.

Gastrointestinal and Antiemetic Drugs

- Commonly used antacids are combinations of salts of **ALUMINUM AND MAGNESIUM**, such as aluminum hydroxide and magnesium hydroxide [Mg(OH)2].
- CALCIUM CARBONATE [CaCO3] reacts with HCl to form CO2 and CaCl2 and is also a <u>commonly used</u> preparation.
- Systemic absorption of SODIUM BICARBONATE can produce transient metabolic alkalosis and produce a significant sodium load. Therefore, this antacid is not recommended.

Therapeutic uses:

- Antacids are used for symptomatic relief of <u>peptic ulcer</u> disease, <u>heartburn</u>, and <u>GERD</u>.
- They should be administered <u>after meals</u> for maximum effectiveness.
- Calcium carbonate preparations are also used as calcium supplements for the prevention of osteoporosis.

Adverse effects:

- Aluminum hydroxide tends to cause <u>constipation</u>, whereas magnesium hydroxide tends to produce <u>diarrhea</u>, thus, preparations that combine these agents aid in normalizing bowel function.
- Accumulation and adverse effects may occur in patients with renal impairment.

MUCOSAL PROTECTIVE AGENTS:

- Also known as cytoprotective compounds.
- These agents have several actions that <u>enhance mucosal</u> <u>protection mechanisms</u>, thereby <u>preventing mucosal injury</u>, <u>reducing inflammation</u>, and <u>healing existing ulcers</u>.

1. Sucralfate:

- This complex of <u>aluminum hydroxide</u> and <u>sulfated sucrose</u> binds to positively charged groups in proteins of both normal and necrotic mucosa forming complex gels which act as a physical barrier that protects the ulcer from <u>pepsin</u> and <u>acid</u>, allowing the ulcer to heal.
- Although sucralfate is effective for the treatment of duodenal ulcers and prevention of stress ulcers, its use is limited due to:
 - The need for multiple daily dosing.
 - -O Drug-drug interactions.
 - The availability of more effective agents.
- Because it requires an acidic pH for activation, sucralfate should not be administered with PPIs, H2 antagonists, or antacids.
- Sucralfate is well tolerated {constipation due to Al}.
- It can bind to other drugs and interfere with their absorption.

2. Bismuth subsalicylate:

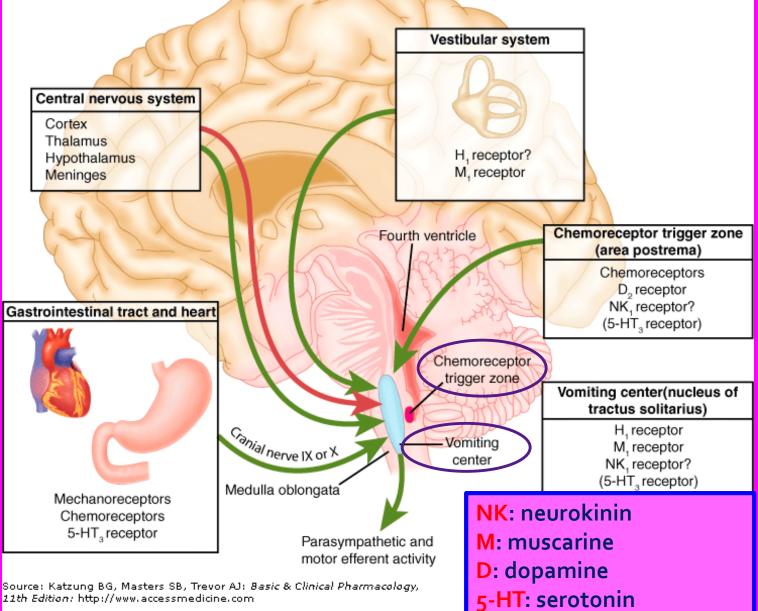
- It is a component of quadruple therapy to heal H. pylori-related peptic ulcers.
- In addition to its {1} antimicrobial actions, {2} it inhibits the activity of pepsin, {3} increases secretion of mucus, {4} and interacts with glycoproteins in necrotic mucosal tissue to coat and protect the ulcer.

ADVERSE EFFECTS:

- All bismuth formulations have excellent safety profiles.
- Bismuth causes harmless blackening of the stool, which may be confused with gastrointestinal bleeding.
- O Harmless darkening of the tongue.
- Prolonged usage of some bismuth compounds may rarely lead to bismuth toxicity, resulting in **encephalopathy** (ataxia, headaches, confusion, seizures).

ANTIEMETIC AGENTS:

- Nausea and vomiting may be manifestations of a wide variety of conditions, including adverse effects from <u>medications</u>; <u>systemic</u> <u>disorders</u> or <u>infections</u>; <u>pregnancy</u>; <u>vestibular dysfunction</u>; <u>central nervous system infection</u> or <u>increased pressure</u>; <u>peritonitis</u>; <u>hepatobiliary disorders</u>; <u>radiation or chemotherapy</u>; and <u>gastrointestinal obstruction</u>, <u>dysmotility {related to the</u> <u>muscles of the GIT}</u>, or <u>infections</u>.
- <u>Uncontrolled</u> vomiting can produce <u>dehydration</u>, profound metabolic imbalances, and <u>nutrient depletion</u>.
- 10% to 40% of patients experience nausea and/or vomiting in anticipation of chemotherapy (anticipatory vomiting).
- Anticipatory vomiting: triggered by talking or thinking about the medication.


Pathophysiology:

- Vomiting center, brain stem neuronal region, coordinates the complex act of vomiting through interactions with cranial nerves VIII and X and neural networks in the nucleus tractus solitarius that control respiratory, salivatory, and vasomotor centers.
- High concentrations of muscarinic M1, histamine H1, neurokinin 1 (NK1), and serotonin 5-HT3 receptors have been identified in the vomiting center.
- There are <u>four</u> important sources of afferent input to the vomiting center:
- 1. The "chemoreceptor trigger zone":
- Outside the BBB.
- D2 receptors, opioid receptors, 5-HT3 and NK1 receptors.

34

Gastrointestinal and Antiemetic Drugs

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

35

- 2. The vestibular system {of the inner ear}:
- A sensory system that is responsible for providing the brain with information about motion, head position, and spatial orientation.
- Important in **motion sickness** via cranial nerve VIII.
- It is rich in muscarinic M1 and histamine H1 receptors.
- 3. Vagal and spinal afferent nerves:
- From the gastrointestinal tract.
- Rich in 5-HT3 receptors.
- Irritation of the gastrointestinal mucosa by chemotherapy, radiation therapy, distention, or acute infectious gastroenteritis leads to release of mucosal serotonin and activation of these receptors.

4. The central nervous system:

- Vomiting due to psychiatric disorders, stress, and anticipatory vomiting prior to cancer chemotherapy.
- Due to the complexity of the mechanisms involved in emesis, the antiemetics represent a variety of classes.

CLASSES OF THE ANTIEMETIC AGENTS:

<u>1. Phenothiazines:</u>

- Such as prochlorperazine.
- Act by <u>blocking dopamine receptors</u> in the CTZ.
- Prochlorperazine is effective against low or moderately emetogenic chemotherapeutic agents (e.g. fluorouracil and doxorubicin).

Gastrointestinal and Antiemetic Drugs

2. <u>5-HT3 receptor blockers:</u>

- The 5-HT3 receptor <u>antagonists</u> include <u>dolasetron</u>, <u>granisetron</u>, <u>ondansetron</u>, and <u>palonosetron</u>.
- They are important in treating chemotherapy-induced nausea and vomiting (CINV), because of their superior EFFICACY and LONGER DURATION OF ACTION.

 These drugs can be administered as a single dose prior to chemotherapy (i.v. or orally).

PHENOTHIAZINES

Prochlorperazine GENERIC ONLY

5-HT₃ SEROTONIN RECEPTOR ANTAGONISTS

Dolasetron ANZEMET Granisetron SANCUSO, SUSTOL

Ondansetron ZOFRAN

Palonosetron ALOXI

SUBSTITUTED BENZAMIDES

Metoclopramide REGLAN

BUTYROPHENONES

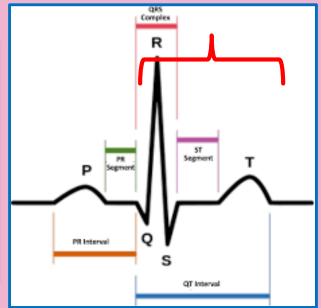
Droperidol GENERIC ONLY Haloperidol HALDOL

BENZODIAZEPINES

Alprazolam XANAX Lorazepam ATIVAN

CORTICOSTEROIDS

Dexamethasone DECADRON Methylprednisolone MEDROL


SUBSTANCE P/NEUROKININ-1 RECEPTOR ANTAGONIST

Aprepitant, Fosaprepitant EMEND Netupitant* AKYNZEO Rolapitant VARUBI

- They are efficacious against all grades of emetogenic therapy.
- Ondancetron and granicetron prevent emesis in 50% to 60% of cisplatin-treated patients.
- Extensively metabolized by the liver, excreted in the urine.
- QT prolongation can occur with high doses of ondansetron and dolasetron.

QT prolongation: is a measure of delayed ventricular repolarisation, which means the heart muscle takes longer than normal to recharge between beats. Excessive QT prolongation can trigger tachycardias such as Torsades de Pointes (TdP) {ventricular tachycardia}.

3. Substituted benzamides:

- Metoclopramide, is effective at high doses against the emetogenic cisplatin.
- Metoclopramide accomplishes this through <u>inhibition of</u> <u>dopamine in the CTZ {blocking D2 recptors}.</u>
- Antidopaminergic adverse effects, including extrapyramidal symptoms [Spasm of tongue, neck, face and back / tremors, heavy gait / repetitive motion and agitation] limit long-term and high-dose use.
- Metoclopramide <u>enhances gastric motility</u> and is useful for patients with gastroparesis [motility is slowed down or doesn't work at all, preventing the stomach from emptying properly].

4. Butyrophenones:

- Droperidol and haloperidol act by blocking dopamine receptors.
- The butyrophenones are <u>moderately</u> effective antiemetics.
- Droperidol had been used most often for <u>sedation in endoscopy</u> and <u>surgery</u>, usually in combination with <u>opioids</u> or <u>benzodiazepines</u>.
- However, it may prolong the QT-interval and should be reserved for patients with inadequate response to other agents.

5. Benzodiazepines:

- The antiemetic potency of lorazepam and alprazolam is Low.
- Their beneficial effects may be due to their <u>SEDATIVE</u>, <u>ANXIOLYTIC</u>, and <u>AMNESTIC</u> properties

6. Corticosteroids:

- DEXAMETHASONE and METHYLPREDNISOLONE, used alone, are effective against <u>mildly to moderately emetogenic</u> <u>chemotherapy.</u>
- Most frequently, they are used in combination with other agents.
- Their antiemetic mechanism is not known, but it may involve blockade of prostaglandins.
- 7. Substance P/neurokinin-1 receptor antagonists:
- It is a neuropeptide (11 amino acids), acting as a NT and as a neuromodulator.
- APREPITANT, NETUPITANT and ROLAPITANT target the neurokinin receptor in the vomiting center and <u>block the</u> <u>actions of substance P</u>, {that is related to neurokinin A = <u>substance K</u>)}.

- **Fosaprepitant** is a prodrug of **aprepitant** that is administered intravenously.
- These oral agents are indicated for <u>highly or moderately</u> emetogenic chemotherapy regimens.
- They are usually administered with <u>dexamethasone</u> and <u>a 5-</u> <u>HT3 antagonist.</u>
- Unlike most 5-HT3 antagonists, these agents are <u>effective</u> for the **delayed** phase of CINV, which <u>occurs 24 hours or more</u> <u>after</u> chemotherapy. {<u>CINV:</u> chemotherapy-induced nausea and vomiting}
- Aprepitant and rolapitant undergo hepatic metabolism, primarily by CYP3A4.
- Coadministration with strong inhibitors or inducers of CYP3A4 (for example, clarithromycin or St. John's wort, respectively) should be avoided.

- Aprepitant is an inducer of CYP3A4 and CYP2C9, and it also exhibits dose-dependent inhibition of CYP3A4.
- Rolapitant is a moderate inhibitor of CYP2D6.

ADVERSE EFFECTS:

Fatigue, diarrhea, abdominal pain, and hiccups [an involuntary spasm of the diaphragm and respiratory organs, with a sudden closure of the glottis and a characteristic sound like that of a cough].

COMBINATIONS OF ANTIEMETIC AGENTS AIM TO:

- 1. Increase efficacy.
- 2. Decrease toxicity and side effects.

Gonadal hormones and inhibitors

45

REFERENCES:

- Basic and clinical pharmacology textbook 14th edition, 2018. Katzung.
- Lippincott's Illustrated Reviews, Pharmacology textbooks 5th, 6th and 7th editions, R. Harvey.
- Medscape (https://www.medscape.com/).
- DrugBank (https://www.drugbank.ca/).
- WebMD (https://www.webmd.com/).
- Drugs.com (https://www.drugs.com/).
- Healthline (https://www.healthline.com/).
- RxList (https://www.rxlist.com/script/main/hp.asp).
- NHS (https://www.nhs.uk/).